
A NOTE ON INTERSECTION THEORY OF DIVISORS (LINE

BUNDLES)

All varieties in this note are projective variety over C, except otherwise stated.

Definition 0.1. Let X be a variety and F be a coherent sheaf on X. Suppose
that the dimension of support of F is at most n, and take n invertible sheaves
L1, · · · , Ln on X. Define the intersection of L1, · · · , Ln with F by

(0.2) (L1 · · ·Ln · F) =
∑

{i1,··· ,im}⊆{1,··· ,n}

(−1)mχ(X,L∨
i1 ⊗ · · · ⊗ L∨

im ⊗F).

If Y is a subvariety of X of dimension at most n, we denote (L1 · · ·Ln · OY ) by
(L1 · · ·Ln · Y ), and when (L1 · · ·Ln ·X) by (L1 · · ·Ln). If D1, · · · , Dn are Cartier
divisors, we write

(0.3) (D1 · · ·Dn · F) := (O(D1) · · · O(Dn) · F).

The following are the main useful properties of this intersection product:

Proposition 0.4. The intersection product defined above satisfies

(1) If L1 = OX , then (L1 · · ·Ln · F) = 0.
(2) (L1 · · ·Ln · F) is symmetric and multilinear in Li.
(3) For subscheme Z of X of dimension n, we have (L1 · · ·Ln·Z) = (L1|Z · · ·Ln|Z).
(4) (Projection formula) Let f : Y → X be a morphism of varieties, and G be

a coherent sheaf on Y

(0.5) (f∗L1 · · · f∗Ln · G) = (L1 · · ·Ln · f∗G)

(5) If f : Y → X is a morphism of varieties of the same dimension n, then

(0.6) (f∗L1 · · · f∗Ln) = deg(f)(L1 · · ·Ln)

We leave proving (1) as an exercise and start by proving (2). Symmetry is
immediate from definition. For multilinearity, we need following lemma

Lemma 0.7. Suppose that Ln = OX(D) such that D is effective cartier divisor
which does not contain any associated point of F , then

(0.8) (L1 · · ·Ln · F) = (L1|D · · ·Ln−1|D · F|D).

Proof. We have the usual exact sequence

(0.9) 0 → O(−D) → OX → OD → 0

Locally, the first map is given by multiplication by the equation defining D. It
follows that by tensoring with F , we gen injective map F(−D) → F because if D
is locally defined on affine open Spec(A) by a, then a cannot be zero divisor of the
module corresponding to F as otherwise a will vanish on an associated point F .
At the end, we get exact sequence

(0.10) 0 → O(−D) → F → F|D → 0
1
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which implies by additivity of Euler characteristic with respect to exact sequences

(L1|D · · ·Ln−1|D · F|D) =
∑

{j1,··· ,jm−1}⊆{1,··· ,n−1}

(−1)m−1χ(D,L∨
i1 |D ⊗ · · · ⊗ L∨

im−1
|D ⊗F|D)

=
∑

{j1,··· ,jm−1}⊆{1,··· ,n−1}

(−1)m−1χ(D,L∨
i1 ⊗ · · · ⊗ L∨

im−1
⊗ i∗F|D)

= −
∑

{i1,··· ,im−1,n}⊆{1,··· ,n}

(−1)m−1χ(X,L∨
i1 ⊗ · · · ⊗ L∨

im−1
⊗F(−D))+

+
∑

{i1,··· ,im}⊆{1,··· ,n−1}

(−1)mχ(X,L∨
i1 ⊗ · · · ⊗ L∨

im−1
⊗F)

=
∑

{i1,··· ,im−1,n}⊆{1,··· ,n}

(−1)mχ(X,L∨
i1 ⊗ · · · ⊗ L∨

im−1⊗L∨
n
⊗F)

+
∑

{i1,··· ,im}⊆{1,··· ,n−1}

(−1)mχ(X,L∨
i1 ⊗ · · · ⊗ L∨

im−1
⊗F)

=
∑

{i1,··· ,im}⊆{1,··· ,n}

(−1)mχ(X,L∨
i1 ⊗ · · · ⊗ L∨

im ⊗F)

= (L1 · · ·Ln · F)

(0.11)

In the second equality we uese the projection formula □

Now, we prove the original claim by induction on n. The base case n = 0 is
trivial. Next, let’s observe that
(0.12)
(L1 ·L′

1 ·L2 · · ·Ln ·F) = (L1 ·L2 · · ·Ln ·F)+(L′
1 ·L2 · · ·LnF)−(L1⊗L′

1 ·L2 · · ·Ln ·F).

It suffices to prove that the left hand side is equal to 0 by symmetry. Let D be an
effective Cartier divisor avoiding the associated points of F . We know that F|D
has support of dimension at most n − 1 by Krull principal ideal theorem, then by
inductive hypothesis letting Ln = O(D), we have

(0.13) (L1 · L′
1 · · ·Ln · F) = (L1 · L′

1 · · ·Ln−1 · F|D) = 0.

For ample line bundle L, we can find an effective cartier divisor D avoiding the
associated points of F and L = O(D) (see the proof of (5) for more details). We
conclude that for any ample line bundle L, we have

(0.14) (L · L′ · L2 . . . Ln · F) = 0

That means (by symmetry) that if L is ample line bundle, then

(0.15) (L · L2 · · ·Ln · F)

is linear in Ln. It is well-known that a line bundle L1 can be written as L1 = A⊗B∨,
where A and B are ample line bundles. Putting L = B and L′ = A⊗B∨ in (0.14)
and using (0.12), we get

(0.16) (L⊗K∨ · L2 · · ·Ln · F) = (L · L2 · · ·Ln · F)− (K · L2 · · ·Ln · F).

So, the right side is multilinear in Ln by (0.15). We are done by symmetry.

By the proof above, we have the following lemma, which will be used
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Lemma 0.17. If n > dimSupp(F), then

(0.18) (L1 · · ·Ln · F) = 0

The projection formula (4) is proven as follows. We recall Grothendieck spectral
sequence

(0.19) Ep,q
2 = Hp(Rqf∗(f

∗L∨
i1⊗· · ·⊗f∗L∨

im⊗G)) =⇒ Hp+q(f∗L∨
1⊗· · ·⊗f∗L∨

n⊗G)
However, by the projection formula of sheaves, the E2 term is canonically isomor-
phic to

(0.20) Ep,q
2 = Hp(L∨

i1 ⊗ · · · ⊗ L∨
im ⊗Rqf∗G)

It follows that (as the Euler characteristic of the pages of a spectral sequence are
equal)

(0.21)
∑
p,q

(−1)p+qhp(L∨
i1⊗· · ·⊗L∨

im⊗Rqf∗G) =
∑
i

(−1)ihi(f∗L∨
i1⊗· · ·⊗f∗L∨

im⊗G)

Hence,

(f∗L1 · · · f∗Ln · G) =
∑

{i1,··· ,im}⊆{1,··· ,n}

(−1)mχ(f∗L∨
i1 ⊗ f∗Lim

∨ ⊗ G)

=
∑

{i1,··· ,im}⊆{1,··· ,n}

(−1)m
∑
p,q

(−1)p+qhp(L∨
i1 ⊗ · · · ⊗ L∨

im ⊗Rqf∗G)

=
∑

{i1,··· ,im}⊆{1,··· ,n}

(−1)q
∑

(−1)mχ(L∨
i1 ⊗ · · · ⊗ L∨

im ⊗Rqf∗G)

=
∑
q

(−1)q(L1 · · ·Ln ·Rqf∗G)

(0.22)

It remains to show that (L1 · · ·Ln · Rqf∗G) = 0 for q > 0. For this, it suffices
by lemma 0.17 to show that Supp(Rqf∗G) has dimension less than n. It is clear
that the support of Rqf∗G lies inside the image of the support of G (Recall that
Rqf∗G is the sheafification of U 7→ Hq(f−1(U),G).) It suffices then to show that
for each irreducible component of Z of Supp(G) such that f(Z) has dimension n,
we have (Rqf∗G)x = 0 for generic x in f(Z). It is not so difficult (if we assume we
know openess of flat locus) to find open U ⊆ f(Z) such that the restriction of f to
V = f−1(U)∩Z is finite and G is flat over U . Now we apply cohomology and Base
change theorems. By finitenes of f |V , we know by Grothendieck vanishing theorem
that

(0.23) dimHq(f−1(x),Gx) = 0

for all q > 0, we find by Grauret theorem that Rqf∗G is locally free sheaf on U of
rank 0. It follows that the support avoids U , that’s the support meets f(Z) in a
subvariety of dimension strictly less than n, which is what we wanted.

For (3), this follows immediately from projection formula by taking f = i, where
i : Z → X is the closed immersion.

Finally, we prove (5). By projection formula,

(0.24) (f∗L1 · · · f∗Ln) = (L1 · · ·Ln · f∗OX)
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We know that there is a dense open subvariety U such that (f∗OX)|U is locally free
of rank deg(f). Next, write Z = X\U , and endow it with the reduced structure.
By multilinearity, we can assume that L1, · · · , Ln are very ample. Now, we claim
there is a sequence of subschemes D1 ⊂ · · · ⊂ Dn such that Di is effective Cartier
divisor in Di+1 such that Li|Di+1

= ODi+1
(Di) and D1 ∩ Z = ∅. Assuming this

claim for now, we have inductively using lemma 0.7

(L1 · · ·Ln · f∗OX) = (L1|Di+1
· · ·Li|Di+1

· (f∗OX)|Di+1
)

= (L1|Di+1
· · ·Li|Di

· O|Di+1
(Di) · (f∗OX)|Di+1

)

= (L1|Di · · ·Li−1|Di · (f∗OX)|Di)

= (·(f∗OX)|D1
) = (·Odeg(f)

D1
)

= deg(f)(L1|D2
· Odeg(f)

D2
) = · · · = deg(f)(L1 · · ·Ln).

(0.25)

Now we need to prove the claim above. Inductively, assume that Z ′ = Di+1∩Z has
dimension i, and embed Di+1 into PN such that Li|Di+1

= OPN (H)|Di+1
where H is

a hyperplane. It is known that for generic hyperplane H, the dimension of H∩Z ′ is
one less the dimension of Z ′ (i.e equals i−1.) Moreover, one can always choose this
hyperplane to avoid the finitely many associated points of Di and hence H ∩Di+1

is an effective Cartier divisor representing Li|Di+1
, we define Di = H ∩Di+1. The

sequence D1 ⊂ · · ·Dn thus produced satisfy the claim.

We give a cohomological formula of the intersection formula, for this we start with
the following definition of the cycle associated to a coherent sheaf.

Definition 0.26. If dim supp(F) ≤ n, then we define the class of [F ] by

(0.27) [F ]n =
∑
Y

lengthOX,ξY
(FξY )[Y

an] ∈ HBM
n (Xan;Z),

where the sum is over all irreducible components of supp(F) of dimensino n and ξY
denotes the generic point of Y . Here HBM

∗ denotes the Borel-Moore cohomology
and [Y an] the fundamental class of Y an.

Proposition 0.28. Let X be a variety, F be a coherent sheaf on X and L1, · · · , Ln

be line bundles on n. Suppose that the dimension of the support on F is less than
or equal n. Then,

(0.29) (L1 · · ·Ln · F) = (c1(L
an
1 ) ∪ · · · ∪ c1(L

an
n )) ∩ [F ]

Proof. We will prove this only for the case F = OY , where Y is a subscheme of
X. Now by multilinearity of both sides, we can assume that Li is ample for each i.
The proof then is divided into two steps.

Step 1. We reduce to proving that for effective ample Cartier divisor D such that
all the associated points of Y are not in D, we have c1(OX(D)an)∩ [Y an] = [D|anY ],
where D|Y is the restriction D to Y .

This is similar to our proof of assertion (5) of the previous proposition. We re-
call that one can find sequence of subschemes D1 ⊂ · · · ⊂ Dn such that Di contains
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no associated point of Di+1 ∩ Z. Inductively, we have

(L1 · · ·Ln · F) = (L1|D · · ·Ln−1|D · OD|Y )

= i∗c1(L
an
1 ) ∪ · · · ∪ i∗c1(L

an
n−1) ∩ [D|Y ]

= (c1(L
an
1 ) ∪ · · · ∪ c1(L

an
n−1)) ∩ i∗([D|Y ])

= (c1(L
an
1 ) ∪ · · · ∪ c1(L

an
n−1)) ∩ (c1(L

an
n ) ∩ [Y an])

= (c1(L
an
1 ) ∪ · · · ∪ c1(L

an
n−1) ∪ c1(L

an
n )) ∩ [Y an],

(0.30)

where in the last equality we used the property of cap and cup products

(0.31) (α ∪ β) ∩ c = α ∩ (β ∩ c).

Step 2. We prove the statement in step 2. In the following we drop the ”an”
superscript. First, it suffices to show the statement for Y = X. The second thing
to note that by ampleness, we can assume that D′ = D ∩Xreg is smooth (Bertini
theorem), thus we can assume X is quasi-projective and smooth and D a smooth
divisor on it 1. We let ∇ be a Chern connection of OX(D) with respect to a so that

(0.32) c1(OX(D)) =

[√
−1

2π
F∇

]
= −

√
−1

2π
∂∂ log h

We have to show that for all compactly supported closed forms ω

(0.33)

∫
X

c1(OX(D)) ∪ ω =

∫
D

ω.

Let s be the section defining D, and let Uϵ be the neighborhood

{x ∈ X|∥s(x)∥h < ϵ}.

Then we compute∫
X

c1(OX(D)) ∪ ω = lim
ϵ→0

√
−1

2π

∫
X\Dϵ

F∇ ∧ ω

= lim
ϵ→0

−
√
−1

2π

∫
X\Dϵ

∂∂ log ∥s∥h ∧ ω

= lim
ϵ→0

√
−1

4π

∫
∂Dϵ

(∂ − ∂) log ∥s∥h ∧ ω

(0.34)

We can see that the problem is local, we take coordinate chart (U, z1, · · · , zn) on
which L is trivial with s being given by z1 in the trivialization, and the metric is
given by hi. We assume the image of the chart is the polydisc {|zi| < 1}. We get

(∂ − ∂) log ∥s∥h = ∂ log z1 − ∂ log z1 + (∂ − ∂) log hi

= 2
√
−1Im (∂ log z1) + (∂ − ∂) log h1

(0.35)

1Note the we used the following observation. There is a map

Div(X) → Zn−1(X) → HBM
2n−2(X)

the first map was mentioned in Ruadháı’s talk and the second map is the obvious one. Now

that composition sends our effective Cartier divisor D to the class [D]n of definition 0.26 and the

important thing here is that the map factors through Cartier divisor equivalence classes and hence
we can use any Cartier divisor linearly equivalent to D which we have just done using Bertini

theorem.
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The second summand does not contribute to the integral as ϵ → 0 because it is
continuous. What we want to show then is

(0.36) lim
ϵ→0

1

2π

∫
∂Dϵ∩U

Im(∂ log z1) ∧ ω = −
∫
D∩U

ω

We have clearly

(0.37) ∂ log(z1) =
dz1
z1

hence, we can assume that

(0.38) ω = f(dz2 ∧ · · · ∧ dzn) ∧ (dz2 ∧ · · · ∧ dzn)

We compute the right side of (0.36)
(0.39)∫
D∩U

ω =

∫
z1=0

ω =

∫
|z2|<1,··· ,|zn|<1

f(0, z2, · · · , zn)(dz2∧· · ·∧dzn)∧(dz2∧· · ·∧dzn)

and the left side

(0.40)

∫
∂Dϵ∩U

∂ log ∥s∥h∧ω = −
∫
|h(z1)|=ϵ

f
dz1
z1

∧(dz2∧· · ·∧dzn)∧(dz2∧· · ·∧dzn)

By Cauchy integral formula, we can reduce this as follows

− 1

2π
Im

∫
|h(z1)|=ϵ

f
dz1
z1

∧ (dz2 ∧ · · · ∧ dzn) ∧ (dz2 ∧ · · · ∧ dzn)

= − 1

2π
Im

∫
|z1|=ϵ/hi

f
dz1
z1

∧ (dz2 ∧ · · · ∧ dzn) ∧ (dz2 ∧ · · · ∧ dzn)

= − 1

2π
Im

∫
|z1|=ϵ/hi

(∫
|zi|<1 ; i>1

f(0, zi>1) ∧ (dz2 ∧ · · · ∧ dzn) ∧ (dz2 ∧ · · · ∧ dzn)

)
dz1
z1

= − 1

2π
Im(2

√
−1π)

∫
z1=0

ω =

∫
D∩U

ω

= −
∫
z1=0

ω = −
∫
D∩U

ω

(0.41)

□


