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A multiplicative function is a function f : N → R such that for every m,n ∈ N such that

f(mn) = f(m)f(n) when gcd(m,n) = 1.

Let S be a multiplicative set, we say f : S → R is quasi-multiplicative if for every f(na) = f(n)a for
every n ∈ S and a ∈ N. In [1], Erdös proved the following theorem

Theorem 0.1. If f is a multiplicative non-decreasing function, then there is c ∈ R>0 such that f(n) = nc

for all n ∈ N.

The goal of this short note is to provide a more elementary proof. After proving the theorem, I found
essentially the same proof, but technically simpler, in the article [2] by Everett Howe.

For the proof, we need two basic lemmas.

Lemma 0.2. Let S be a multiplicatively closed subset of N. Suppose that f : S → R is quasi-multiplicative
and non-decreasing. Then there is c ∈ R>0 such that f(n) = nc for all n ∈ S.

Proof. Take m, l ∈ S and write f(m) = mβ and f(l) = lγ . We want to prove that β = γ. To do this we
choose pn, qn ∈ N such that pn ≤ qn approaches log(m)

log(l) from below as n → ∞, that’s

pn
qn

≤ log(m)

log(l)
, lim

n→∞

pn
qn

=
log(m)

log(l)
.

Then for each n

pn log(l) ≤ qn logm =⇒ lpn ≤ mqn =⇒ f(lpn) ≤ f(mqn) =⇒ lγpn ≤ mβqn =⇒ pn
qn

γ ≤ logm

log n
β,

and taking the limit as n → ∞, we get γ ≤ β. We can prove in the same way that γ ≥ β by requiring
pn/qn to converge to log(m)

log(l) from above.

Lemma 0.3. Let f be a multiplicative function and non-decreasing and fix an odd prime p, then

lim inf
n→∞

n odd, n≡1 (mod p)

f(n+ 1)

f(n)
= 1,

lim inf
n→∞

n odd, n≡−1 (mod p)

f(n+ 1)

f(n)
= 1

Proof. We prove the first equality. Assume the result is not true. Since f is non-decreasing, then there
is a constant ϵ > 0 such that

lim inf
n→∞

n odd, n≡1 (mod p)

f(n+ 1)

f(n)
≥ 1 + 2ϵ

It follows that there is a large N > 0 such that

f(n+ 1)

f(n)
≥ 1 + ϵ (1)
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whenever n ≥ N with n odd and n ≡ 1 (mod p). Note that

f(2) =
f(2pk)

f(pk)
=

f(2pk)

f(2pk − 1)
· f(2p

k − 1)

f(2pk − 2)
· · · f(p

k + 1)

f(pk)

=

pk−1−1∏
j=0

p−1∏
i=0

f(pk + jp+ i+ 1)

f(pk + jp+ i)
.

Inequality (1) implies that for any k ≥ log(N − 1)/ log(p) and any 0 ≤ j ≤ pk−1 − 1, we have

f(pk + jp+ i+ 1)

f(pk + jp+ i)
≥

{
1 + ϵ for i = 1

1 otherwise
.

Hence
f(2) ≥ (1 + ϵ)p

k−1

for all large k, which is a contradiction. This proves the first equation in the lemma, the second one can
be proved in the same way.

Corollary 0.4. If f is multiplicative and non-decreasing, then f(pk) = f(p)k for any odd prime p.

Proof. We have the following

1. Let M be a positive integer such that gcd(M,p) = gcd(M + 1, p) = 1, then

f(pk)f(M) = f(pkM) ≤ f(pkM + pk − p)

= f(p(pk−1M + pk−1 − 1))

≤ f(p)f(pk−1M + pk−1)

= f(p)f(pk−1)f(M + 1)

By taking M = Ml = 2lp+1 (we can because gcd(M +1, p) = gcd(2kp+2, p) = gcd(lp+1, p) = 1),
we get

f(pk) ≤ f(p)f(pk−1) · f(Ml + 1)

f(Ml)
.

But {Ml} is exactly the set of all numbers n such that n is odd and n ≡ 1 (mod p). Now, taking
lim inf of both sides, the lemma implies

f(pk) ≤ f(p)f(pk−1). (2)

2. Let N be a positive integer such that gcd(N, p) = gcd(N − 1, p) = 1, then

f(pk)f(N) = f(pkN) ≥ f(pkN − pk + p)

= f(p(pk−1N − pk−1 + 1))

≥ f(p)f(pk−1N − pk−1)

= f(p)f(pk−1)f(N − 1)

In the same way as above, by taking N = Nl = 2lp− 1 as l varies and using the lemma, we get at
the end

f(p)f(pk−1) ≤ f(pk). (3)

Now the corollary follows immediately by combining (2) and (3).

Corollary 0.5. Let Sodd be the multiplicative subset of N consiting of all odd numbers. If f is multi-
plicative and non-decreasing, then f |Sodd

is quasi-multiplicative
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Proof. Let n = pe11 · · · pekk be odd number written as product of coprime prime powers. Let a be a positive
integer. Then by multiplicativity and corollary above we get

f(na) = f(pae11 · · · paekk )

= f(pae11 ) · · · f(paekk )

= f(p1)
ae1 · · · f(pk)aek

= f(pe11 )a · · · f(pekk )a

= f(n)a

Finally, we give a proof of the main theorem

Proof of Theorem 0.1. By the previous corollary and lemma 0.2, we find c > 0 such that f(n) = nc for
all odd integers n. By monotonicity, we have the inequalities

f(2n− 1)f(2k−1) ≤ f(2kn) ≤ f(2kn+ 2k−1) = f(2k−1)f(2n+ 1)

By montonicity and multiplicativity we have for all odd n

f(n− 2)f(2)f(2k−1) = f(2n− 4)f(2k−1) ≤ f(2k)f(n) ≤ f(2k−1)f(2n+ 4) = f(2k−1)f(2)f(n+ 2)

Substituting the form of f on odd integers and dividing by f(n)(
n− 2

n

)c

· f(2)f(2k−1) ≤ f(2k) ≤ f(2)f(2k−1) ·
(
n+ 2

n

)c

Now take n → ∞ to obtain f(2k) = f(2)f(2k−1) and subsequently f(2k) = f(2)k. Now, it is immediate
that f is quasi-multiplicative and as a result f(n) = nc for all positive integers n.
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