A Proof of a Theorem due to Erdos
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A multiplicative function is a function f : N — R such that for every m,n € N such that
f(mn) = f(m)f(n) when ged(m,n) = 1.
Let S be a multiplicative set, we say f : S — R is quasi-multiplicative if for every f(n®*) = f(n)* for
every n € S and a € N. In [I], Erdés proved the following theorem

Theorem 0.1. If f is a multiplicative non-decreasing function, then there is ¢ € Rsq such that f(n) = n®

for all n € N.

The goal of this short note is to provide a more elementary proof. After proving the theorem, I found
essentially the same proof, but technically simpler, in the article [2] by Everett Howe.

For the proof, we need two basic lemmas.

Lemma 0.2. Let S be a multiplicatively closed subset of N. Suppose that f : S — R is quasi-multiplicative
and non-decreasing. Then there is ¢ € Rsq such that f(n) =n for alln € S.

Proof. Take m,l € S and write f(m) = m” and f(I) = [7. We want to prove that 8 = . To do this we

choose py, ¢, € N such that p, < g, approaches lffg(g?)) from below as n — oo, that’s
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and taking the limit as n — oo, we get v < 8. We can prove in the same way that v > § by requiring
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Lemma 0.3. Let f be a multiplicative function and non-decreasing and fix an odd prime p, then
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Proof. We prove the first equality. Assume the result is not true. Since f is non-decreasing, then there
is a constant € > 0 such that
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It follows that there is a large N > 0 such that
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whenever n > N with n odd and n =1 (mod p). Note that
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Inequality implies that for any k > log(N — 1)/log(p) and any 0 < j < p*~! — 1, we have
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for all large k, which is a contradiction. This proves the first equation in the lemma, the second one can
be proved in the same way. O

Corollary 0.4. If f is multiplicative and non-decreasing, then f(p*) = f(p)¥ for any odd prime p.
Proof. We have the following
1. Let M be a positive integer such that ged(M,p) = ged(M + 1,p) = 1, then

By taking M = M; = 2lp+1 (we can because ged(M +1,p) = ged(2kp+2,p) = ged(lp+1,p) = 1),
we get
f(M;+1)

f(M;)

But {M,} is exactly the set of all numbers n such that n is odd and n =1 (mod p). Now, taking
lim inf of both sides, the lemma implies

FO8) < fo)fE ). (2)
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2. Let N be a positive integer such that ged(NV,p) = ged(N — 1,p) = 1, then

In the same way as above, by taking N = N; = 2Ilp — 1 as [ varies and using the lemma, we get at
the end

F) @) < fOY). (3)
Now the corollary follows immediately by combining and . O

Corollary 0.5. Let S,qq be the multiplicative subset of N consiting of all odd numbers. If f is multi-

plicative and non-decreasing, then f|s,,, i quasi-multiplicative



Proof. Let n = p{* ---pi*¥ be odd number written as product of coprime prime powers. Let a be a positive
integer. Then by multiplicativity and corollary above we get

f(n®) = flpi - ™)
= f1*) - f(op™)
= f(m )“61 o fpr) e
= fi)* - fR)"
= f(n)*

Finally, we give a proof of the main theorem

Proof of Theorem[0.} By the previous corollary and lemma we find ¢ > 0 such that f(n) = n° for
all odd integers n. By monotonicity, we have the inequalities

F(2n = DFEFY) < f(2F0) < F@n+ 261 = FF ) f2n + 1)

By montonicity and multiplicativity we have for all odd n

Fn=2)f@)f 257 = f2n -9 f2"1) < F25)f(n) < FRMHF2n+4) = N (2)f(n +2)

Substituting the form of f on odd integers and dividing by f(n)
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Now take n — oo to obtain f(2¥) = f(2)f(2¥~!) and subsequently f(2%) = f(2)*. Now, it is immediate
that f is quasi-multiplicative and as a result f(n) = n¢ for all positive integers n. O
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